629 research outputs found

    The multiple costs of invasive alien species

    Get PDF

    Computing the Greedy Spanner in Linear Space

    Full text link
    The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algorithms that compute the greedy spanner of n points use Omega(n^2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a O(n)-space algorithm that computes the same spanner for points in R^d running in O(n^2 log^2 n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented

    The ecomics of ecosystems and biodiversity: scoping the scale

    Get PDF
    The G8 decided in March 2007 to initiate a “Review on the economics of biodiversity loss”, in the so called Potsdam Initiative: 'In a global study we will initiate the process of analysing the global economic benefit of biological diversity, the costs of the loss of biodiversity and the failure to take protective measures versus the costs of effective conservation. The study is being supported by the European Commission (together with the European Environmental Agency and in cooperation with the German Government. “The objective of the current study is to provide a coherent overview of existing scientific knowledge upon which to base the economics of the Review, and to propose a coherent global programme of scientific work, both for Phase 2 (consolidation) and to enable more robust future iterations of the Review beyond 2010.

    The cost of policy inaction : the case of not meeting the 2010 biodiversity target

    Get PDF
    The COPI methodology and valuation database. Change in land use, climate, pollution, water use; change in biodiversity; change in ecosystem functions; change in ecosystem services contributes to change in economic value. The Cost of Policy Inaction (COPI) is described in monitory terms. The outcome (of this project) is the valuation database. In this project worked together: Alterra, IEEP (Brussels), Ecologic (Germany), FEEM (Italy), GHK (UK), UNEP and Witteveen+Bo

    The nature of the crust under Cayman Trough from gravity

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 19 (2002): 971-987, doi:10.1016/S0264-8172(02)00132-0.Considerable crustal thickness variations are inferred along Cayman Trough, a slow-spreading ocean basin in the Caribbean Sea, from modeling of the gravity field. The crust to a distance of 50 km from the spreading center is only 2–3 km thick in agreement with dredge and dive results. Crustal thickness increases to ∌5.5 km at distances between 100 and 430 km west of the spreading center and to 3.5–6 km at distances between 60 and 370 km east of the spreading center. The increase in thickness is interpreted to represent serpentinization of the uppermost mantle lithosphere, rather than a true increase in the volume of accreted ocean crust. Serpentinized peridotite rocks have indeed been dredged from the base of escarpments of oceanic crust rocks in Cayman Trough. Laboratory-measured density and P-wave speed of peridotite with 40–50% serpentine are similar to the observed speed in published refraction results and to the inferred density from the model. Crustal thickness gradually increases to 7–8 km at the far ends of the trough partially in areas where sea floor magnetic anomalies were identified. Basement depth becomes gradually shallower starting 250 km west of the rise and 340 km east of the rise, in contrast to the predicted trend of increasing depth to basement from cooling models of the oceanic lithosphere. The gradual increase in apparent crustal thickness and the shallowing trend of basement depth are interpreted to indicate that the deep distal parts of Cayman Trough are underlain by highly attenuated crust, not by a continuously accreted oceanic crust.DFC was partly supported by NSF grant EAR-92-19796

    Effects of 2010 Hurricane Earl amidst geologic evidence for greater overwash at Anegada, British Virgin Islands

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Advances in Geosciences 38 (2014): 21-30, doi:10.5194/adgeo-38-21-2014.A post-hurricane survey of a Caribbean island affords comparisons with geologic evidence for greater overwash at the same place. This comparison, though of limited application to other places, helps calibrate coastal geology for assessment of earthquake and tsunami potential along the Antilles Subduction Zone. The surveyed island, Anegada, is 120 km south of the Puerto Rico Trench and is near the paths of hurricanes Donna (1960) and Earl (2010), which were at or near category 4 when at closest approach. The survey focused on Earl's geologic effects, related them to the surge from Hurricane Donna, and compared them further with erosional and depositional signs of southward overwash from the Atlantic Ocean that dates to 1200–1450 AD and to 1650–1800 AD. The main finding is that the geologic effects of these earlier events dwarf those of the recent hurricanes. Hurricane Earl's geologic effects at Anegada, observed mainly in 2011, were limited to wrack deposition along many of the island's shores and salt ponds, accretion of small washover (spillover) fans on the south shore, and the suspension and deposition of microbial material from interior salt ponds. Earl's most widespread deposit at Anegada, the microbial detritus, was abundantly juxtaposed with evidence for catastrophic overwash in prior centuries. The microbial detritus formed an extensive coating up to 2 cm thick that extended into breaches in beach-ridge plains of the island's north shore, onto playas that are underlain by a sand-and-shell sheet that extends as much as 1.5 km southward from the north shore, and among southward-strewn limestone boulders pendant to outcrops as much as 1 km inland. Earl's spillover fans also contrast with a sand-and-shell sheet, which was dated previously to 1650–1800, by being limited to the island's south shore and by extending inland a few tens of meters at most. These findings complement those reported in this issue by Michaela Spiske and Robert Halley (Spiske and Halley, 2014), who studied a coral-rubble ridge that lines part of Anegada's north shore. Spiske and Halley attribute the ridge to storms that were larger than Earl. But they contrast the ridge with coral boulders that were scattered hundreds of meters inland by overwash in 1200–1450

    The nitrate aerosol field over Europe: simulations with an atmospheric chemistry-transport model of intermediate complexity

    No full text
    International audienceNitrate is an important component of fine aerosols in Europe. We present a model simulation for the year 1995 in which we account for the formation of the ammonium nitrate, a semi volatile component. For this purpose, LOTOS, a chemistry-transport model of intermediate complexity, was extended with a thermodynamic equilibrium module and additional relevant processes to account for aerosol formation and deposition. Our earlier analysis of data on (ammonium) nitrate in Europe was used for model evaluation. During winter, fall and especially spring high nitrate levels are projected over north western, central and eastern Europe. During winter nitrate concentrations are highest in the Po valley, Italy. This is in accordance with the field that was constructed from the data. In winter nitric acid, the precursor for aerosol nitrate, is formed through heterogeneous reactions on the surface of aerosols. Appreciable ammonium nitrate concentrations in summer are limited to those areas with high ammonia emissions, e.g. The Netherlands, since high ammonia concentrations are necessary to stabilise this aerosol component at high temperatures. Averaged over all stations the model reproduces the measured concentrations for NO3, SO4, NH4, TNO3, TNH4 and SO2 within 20%. The daily variation is captured well, albeit that the model does not always represents the amplitude of single events. The model underestimates wet deposition which was attributed to the crude representation of cloud processes. The treatment of ammonia was found to be the major source for uncertainties in the model representation of secondary aerosols. Also, inclusion of sea salt is necessary to properly assess the nitrate and nitric acid levels in marine areas. Over Europe the annual forcing by nitrate is calculated to be 25% of that by sulphate. In summer nitrate is found to be regionally important, e.g. in The Netherlands, where the forcing of nitrate and sulphate are calculated to be equal. In winter, spring and fall the nitrate forcing over Europe is about half that by sulphate. Over north western Europe and the alpine region the forcing by nitrate was calculated to be similar to that of sulphate. Overall, nitrate forcing is significant and should be taken into account to estimate the impact of regional climate change in Europe

    Secondary inorganic aerosol simulations for Europe with special attention to nitrate

    No full text
    International audienceNitrate is an important component of (secondary inorganic) fine aerosols in Europe. We present a model simulation for the year 1995 in which we account for the formation of secondary inorganic aerosols including ammonium sulphate and ammonium nitrate, a semi volatile component. For this purpose, the chemistry-transport model LOTOS was extended with a thermodynamic equilibrium module and additional relevant processes to account for secondary aerosol formation and deposition. During winter, fall and especially spring high nitrate levels are projected over north western, central and eastern Europe. During winter nitrate concentrations are highest in Italy, in accordance with observed data. In winter nitric acid, the precursor for aerosol nitrate is formed through heterogeneous reactions on the surface of aerosols. Modelled and observed sulphate concentrations show little seasonal variation. Compared to sulphate levels, appreciable ammonium nitrate concentrations in summer are limited to those areas with high ammonia emissions, e.g. the Netherlands, since high ammonia concentrations are necessary to stabilise this aerosol component at high temperatures. As a consequence of the strong seasonal variation in nitrate levels the AOD depth of nitrate over Europe is especially significant compared to that of sulphate in winter and spring when equal AOD values are calculated over large parts of Europe. Averaged over all stations the model reproduces the measured concentrations for NO3, SO4, NH4, TNO3 (HNO3+NO3), TNH4 (NH3+NH4) and SO2 within 20%. The daily variation is captured well, albeit that the model does not always represent the amplitude of single events. The model underestimates wet deposition which was attributed to the crude representation of cloud processes. Comparison of retrieved and computed aerosol optical depth (AOD) showed that the model underestimates AOD significantly, which was expected due to the lack of carbonaceous aerosols, sea salt and dust in the model. The treatment of ammonia was found to be a major source for uncertainties in the model representation of secondary aerosols. Also, inclusion of sea salt is necessary to properly assess the nitrate and nitric acid levels in marine areas

    Scoping study to identify potential circular economy actions, priority sectors, material flows and value chains

    Get PDF
    The circular economy is rapidly rising up political and business agendas. In contrast to today’s largely linear, ‘take-make-use-dispose’ economy, a circular economy represents a development strategy that enables economic growth while aiming to optimise the chain of consumption of biological and technical materials. A deep transformation of production chains and consumption patterns is envisaged to keep materials circulating in the economy for longer, re-designing industrial systems and encouraging cascading use of materials and waste. Although there are some elements of circularity such as recycling and composting in the linear economy (see Figure E1) where progress needs to be maintained, a circular economy goes beyond the pursuit of waste prevention and waste reduction to inspire technological, organisational and social innovation across and within value chains (see Figure E2). There are already several policies in place and activities underway that support a circular economy; however there remain a range of untapped opportunities, costs to be avoided and obstacles to be addressed in order to accelerate the move towards a circular economy in the EU. Against this backdrop, the European Commission (DG Environment) launched a Scoping study to identify potential circular economy actions, priority sectors, material flows & value chains. The study was carried out by the Policy Studies Institute (PSI), Institute for European Environmental Policy (IEEP), BIO and Ecologic Institute between November 2013 and July 2014. The aim of the study was to provide an initial scoping assessment of potential priorities and policy options to support the transition to a circular economy in the EU. The study reviewed existing literature, identified potential priority areas for action where accelerating the circular economy would be beneficial and where EU policy has a particular role to play, and developed policy options for consideration across a range of areas
    • 

    corecore